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Abstract. The quantum hydrodynamic analogy (QHA) is derived as the deterministic limit of its stochastic 9 
version. On large scale, the quantum stochastic hydrodynamic analogy (QSHA) shows dynamics that may acquire the 10 
classic behavior. The QSHA shows that in presence of spatially distributed noise the quantum behavior is 11 

maintained on a distance shorter than the correlation length (λc) of fluctuations of the modulus of the wave 12 

function. The quantum mechanics is achieved in the deterministic limit when λc tends to infinity with respect to 13 

the scale of the problem. Moreover, when, the physical length of the problem is of order or larger than λc, the 14 

model shows that the quantum potential may have a finite range of efficacy maintaining its non-local effect on a 15 
finite distance λL (“quantum non-locality length”). The paper also unveils that the SQHA has the corresponding 16 

stochastic Schrödinger equation as happens for the respective deterministic limits. In the case when the classical limit 17 
is approached, the model shows that the dynamics can be described by a non-linear stochastic Schrödinger 18 
equation at the glance with the current theoretical outputs. In particular, the work shows that the semi-empirical Gross-19 

Pitaevskii equation describing the 4He dimer gets a theoretical support by the present approach. 20 

 21 

1.  Introduction 22 
The emergence of classical behavior from a quantum system is a problem of interest in many branches of 23 
physics. The incompatibility between the quantum and classical mechanics comes mainly from the non local 24 
character of the quantum mechanics. From the empirical point of view, may authors have shown that fluctuations 25 
may destroy quantum coherence and elicit the emergence of the classical behavior. By using the alternative 26 
approach of the quantum hydrodynamic analogy (QHA) [1] in this paper we investigate how the fluctuations 27 
influence the quantum non locality and possibly lead to the large-scale classical evolution.  28 
The motivation of using the quite unknown QHA relies in the fact that  it owns a classical-like structure that 29 
makes it suitable for the achievement of a comprehensive understanding of quantum and classical phenomena. 30 
The suitability of the classical-like theories in explaining open quantum phenomena is a matter of fact and is 31 
confirmed by their success in the description of the dispersive effects in semiconductors, multiple tunneling, 32 
mesocopic and quantum Brownian oscillators, critical phenomena, and the theoretical regularization procedure 33 
of quantum field.  34 
Compared to others classical-like approaches (e.g., the stochastic quantization procedure of Nelson [2] and the 35 
mechanics given by Bohm [3]) the QHA has the precious property to be exactly equivalent to the Schrödinger 36 
equation and it is free from problems such as the unclear relation between the statistical and the quantum 37 
fluctuations as in the Nelson theory or the undefined variables of the Bohmian mechanics. Concerning the last 38 
point, as clearly shown by Tsekov [4], it must be noted that the QHA has not to be confused with the Bohmian 39 
mechanics.  40 
Among the objectives that could benefit from the present work there are: The clarification of the hierarchy 41 
between the classical and quantum mechanics; The achievement of a consistent theory of quantum gravity; The 42 
quantum treatment of chaotic dynamical systems and irreversibility.  43 
 44 
 45 
 46 
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2.  The QSHA equation of motion  48 
When the noise is a stochastic function of the space, in the quantum hydrodynamic analogy the motion equation 49 
is described by the stochastic partial differential equation (SPDE) that  reads [5] 50 
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where we generally pose 56 
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. The condition that the fluctuations of the quantum potential )(quV n  do not diverge, as Θ goes 59 

to zero (so that the energy of the fluctuating state does not diverge) is implemented by operating on the system of 60 
the discrete version of the SPDE (1) whose variable reads 61 
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where the space hyper-cell ∆i =[(q(i−1), (q(i) )] (with q(i) - q(i−1)= λ) is taken  around the discrete point q(i) .  63 

The quantum potential fluctuations are derived as a function of the fluctuations of the PDF field at the smallest 64 

order n
0

 + ∆n
1

 . The results show that in order to have limλ→0 <<<<Vqu,Vqu> finite, the following conditions must 65 
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Developing G (λ) for small Θ in series expansion as a function of λ/λc , where λc is defined further on,   we 70 

obtain  71 
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from where it follows that (7-9) are verified if a0 = 1, a1= 0, and a3 = 0, while no condition applies to the 74 

coefficients a2 and  an with  n ≥ 4 that are unable to produce the divergence of (7-9) and remain undefined. 75 

Therefore, )(G λ reads  76 
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where without a leaking of generality we can put 12 +=a  by a re-definition of the spatial cell side λ such as 78 
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In order to obtain a model holding also for a large-scale approach, hence, we investigate in detail the model with 80 

12 −=a  ( 12 =a  does not warrant the ergodicity) with the shape of the correlation function that reads 81 
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2.1. Quantum non-locality length λλλλL 88 

In addition to the noise correlation function (12), to obtain the macro-scale form of equations (15-23) we need to 89 

investigate the large-scale limit of the quantum force quqqu Vp −∇=
•

in (2).  90 

As shown in reference [5] the relevance of the quantum potential force at large distance can be evaluated by the 91 
convergence of the integral 92 
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So that the quantum potential range of interaction can be obtained as the mean weighted distance 94 
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Naming ∆ΩL the physical length of the problem, depending by the two lengths λc and λL the limiting dynamics 96 

follow: 97 

2.2. Schrödinger equation from SQHA  98 

For Θ = 0 equation (1-3) with the identities 99 
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can be derived [35] by the system of two coupled differential equations that read 109 
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that for the complex variable 115 
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is equivalent to set to zero the real and imaginary part of the Schrödinger equation  119 
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For Θ ≠ 0 the stochastic equations  (1-3) can be derived by the following system of differential equations  122 
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 127 
that for the complex variable (22) are equivalent to the stochastic Schrödinger equation  128 
 129 
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2.3. Limiting dynamics 133 

1) Non-local deterministic dynamics (i.e., the standard quantum mechanics) with ∆ΩL << λc  ∪ λL (i.e., Θ → 0):  134 
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2) Non-local stochastic dynamics, with λc  << ∆ΩL << λL  136 
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In this case the stochastic Schrödinger equation (26) reads 139 
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3) Local stochastic dynamics, with  λc  ∪ Lλ << ∆Ωq <<∆ΩL   . 145 

Given the condition λL << ∆Ωq <<∆ΩL  so that it holds  146 
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where δp is a small fluctuation of momentum and  152 
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In this case, by using the identities (17-19) we can write  154 
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 Clearly, it is not possible obtain the Schrödinger equation by (37-38) since S given by (35) converges to the 159 

classical value clS   160 
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 163 
Nevertheless, for the wave function (22) the classical stochastic equation of motion (37-38) can be cast in a non-164 
linear Schrödinger equation that reads: 165 
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 168 

The former differential equation describe the evolution of a particle spatial density |ψ| owing a classical action 169 

Scl . Actually, the exact equation is given by (26) while the former one (40) is just a limiting one and the formal 170 

transformation between them is just intrinsic.  171 
Thence, in order to describe phenomena at the edge between the classical and the quantum behavior, a more 172 
manageable semi-empirical equation for passing from (26) to (40) can be useful.  173 

By considering that the when the physical length of the system L∆Ω  is much smaller than the quantum non-174 

locality length Lλ , the system is quantum, while when Lλ  is very small compared to L∆Ω  is classic, it is 175 

possible to write 176 
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where α  at first order in a series expansion as a function of the dimensionless parameter 
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and where Lλ is given by (16). 184 

It is interesting to note that Equation (41) for pseudo-Gaussian states that have large-distance behavior such as  185 
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with m = 0, A= α k2 . For  states that have the large-distance hyperbolic behavior  194 
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such as in the 4He dimer [37] equation (41) acquires the stochastic form of the Gross-Pitaevskii equation [38]  203 

(i.e., m=2, A= l /2) 204 
 205 
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3.  Discussion  208 
The existence of λL finite allows fluctuations, as small as we like, to overcome the “regular” quantum 209 
force on large distance so that the quantum non-locality can only be maintained on a finite distance of 210 

order of λL�. Since λL finite can steam out from a large number of real non-linear potentials, while the 211 

case of an infinite quantum non-locality length (such as in the linear case) actually seems to be an 212 
exception, the universe behaves classic on its huge scale. Generally speaking, it must be observed that 213 
even thought fluctuations are present, we may have systems characterized by an infinite quantum non-214 

locality length λL (e.g., linear systems owing Gaussian states) so that fluctuations are not sufficient to 215 

break the quantum mechanics and to lead to the classical one. Under this light, the macro-scale description 216 
is not sufficient to obtain the classical behavior if not coupled to a finite quantum non-locality. With this 217 
respect, the WKB approximation is an illuminating example being the non-local large-scale description 218 
but the classical limit. On the contrary, fluctuations may break quantum non-locality in non-linear systems 219 
(λL finite) because, in this case, the quantum pseudo-potential decreases with distance and, beyond the 220 
non-locality length λL, it becomes much smaller than the noise and can be neglected. It must be noted 221 

that, only in the stochastic approach the quantum potential can be correctly neglected while it cannot be 222 
taken off by the deterministic limit of equation (1-3) because in such a case this operation will change the 223 
structure of the equation [5] destroying the quantum stationary states (i.e., eigenstates) and deeply 224 
changing the evolution of the system in a sufficiently short interval of time. 225 

4.  Conclusions  226 
The investigation of the QSHA shows that the quantum potential in presence of spatial noise is source of 227 
fluctuations that modifies the shape of the fluctuations of the PDF field (whose spatial density in the 228 
deterministic limit represents the wave function modulus) suppressing them on a distance much shorter than the 229 

theory-defined quantum coherence length 
21
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achieved when λc goes to infinity with respect to physical scale of the problem (or in the deterministic limit of 231 

null noise amplitude Θ = 0). The correlation function of the PDF field fluctuations (and its characteristic distance 232 



 

 

 

 

 

 

 

λc) close to the deterministic limit of standard quantum mechanics, has been derived by imposing that the system 233 

energy in the fluctuating state does not diverge but remains finite. The model highlights that in the stochastic 234 

case, beyond the quantum coherence length λc,  the quantum potential may have a finite range of efficacy 235 

maintaining the non-local behavior on a distance of order of the theory-defined “quantum non-locality length” 236 
λL depending both by fluctuations amplitude and by the inter-particle law of interaction. Generally speaking, it 237 

has been shown that fluctuations are not sufficient to break the non-local quantum character. In the case of linear 238 

systems it has been shown that λL = ∞ even if λc
 
  is finite. For non-linear interactions, the noise may produce 239 

quantum non-locality breaking when the force of the quantum potential decreases and becomes vanishing at 240 

large distance (beyond λL finite) becoming negligible with respect to the fluctuations. For h  ≠ 0 the classical 241 

stochastic behavior is achieved when λc
  
as well as λL are negligibly small with respect to the physical length of 242 

the problem, while the deterministic classical limit is realized only for the unphysical case of h  = 0. The QSHA 243 
model furnishes the logical compatibility between the quantum and the classical behavior in the frame of a 244 
unique approach. The quantum mechanics is deterministic (at glance with satisfying philosophical requirements 245 
of the quantum mechanics) while the classical one is achieved when, beyond λL, fluctuations disrupt the 246 

quantum potential action as well as the quantum eigenstates that it builds up.  247 
Moreover, the SQHA is able to give a theoretical support to the formulation of the semi-empirical non-linear 248 
Schrödinger equations (such as the Gross-Pitaevskii one) needed to describe the open quantum mechanics where, 249 
actually, the classical effects start to be relevant. 250 
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